A Quasi-hopf Algebra Freeness Theorem

نویسنده

  • PETER SCHAUENBURG
چکیده

We prove the quasi-Hopf algebra version of the Nichols-Zoeller theorem: A finite-dimensional quasi-Hopf algebra is free over any quasi-Hopf subalgebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.

For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of  Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of  Hom-tensor relations have been st...

متن کامل

Projectivity and freeness over comodule algebras

Let H be a Hopf algebra and A an H-simple right H-comodule algebra. It is shown that under certain hypotheses every (H,A)-Hopf module is either projective or free as an A-module and A is either a quasi-Frobenius or a semisimple ring. As an application it is proved that every weakly finite (in particular, every finite dimensional) Hopf algebra is free both as a left and a right module over its f...

متن کامل

Hopf Modules and the Double of a Quasi-hopf Algebra

We give a different proof for a structure theorem of Hausser and Nill on Hopf modules over quasi-Hopf algebras. We extend the structure theorem to a classification of two-sided two-cosided Hopf modules by YetterDrinfeld modules, which can be defined in two rather different manners for the quasi-Hopf case. The category equivalence between Hopf modules and Yetter-Drinfeld modules leads to a new c...

متن کامل

The Structure Theorem for quasi-Hopf bimodules: from quasi-antipodes to preantipodes

It is known that the Fundamental Theorem of Hopf modules can be used to characterize Hopf algebras: a bialgebra H over a field is a Hopf algebra (i.e. it is endowed with a so-called antipode) if and only if every Hopf module M over H can be decomposed in the form M coH ⊗ H , where M coH denotes the space of coinvariant elements in M . A partial extension of this equivalence to the case of quasi...

متن کامل

Two Characterizations of Finite Quasi-hopf Algebras

Let H be a finite-dimensional quasibialgebra. We show that H is a quasi-Hopf algebra if and only if the monoidal category of its finite-dimensional left modules is rigid, if and only if a structure theorem for Hopf modules over H holds. We also show that a dual structure theorem for Hopf modules over a coquasibialgebra H holds if and only if the category of finite-dimensional right H-comodules ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008